用Mathematica绘制四维空间的物体
的有关信息介绍如下:我们无法想像四维空间是什么样子,就像二维生物不知道三维一样!可是,听说有人用Mathematica画出了四维立方体,所以我拿来学了一下,这里介绍一下这些代码。
打开Mathematica,新建笔记本,输入如下代码:
v = Tuples[{-1, 1}, 4];
e = Select[Subsets[Range[Length[v]], {2}],
Count[Subtract @@ v[[#]], 0] == 3 &];
f = Select[Union[Flatten[#]] & /@ Subsets[e, {4}], Length@# == 4 &];
f = f /. {a_, b_, c_, d_} :> {b, a, c, d};
rotv[t_] = (RotationMatrix[
t, {{0, 0, 1, 0}, {0, 1, 0, 0}}].RotationMatrix[
2 t, {{1, 0, 0, 0}, {0, 0, 0, 1}}].#) & /@ v;
proj[t_] := Most[#]/(3 - Last[#]) & /@ rotv[t];
Animate[Graphics3D[
GraphicsComplex[
proj[t], {Blue, Specularity[0.75, 10], Sphere[Range, 0.05],
Tube[e, 0.03], Opacity[0.3], Polygon@f}], Boxed -> False,
Background -> Orange, ImageSize -> 390, PlotRange -> 1], {t, 0.0,
Pi/2.0, 0.075}]
运行以后,就会得到一个“四维立方体”,呵呵,其实就是动态图。
导出动态图的代码如下:
v = Tuples[{-1, 1}, 4];
e = Select[Subsets[Range[Length[v]], {2}],
Count[Subtract @@ v[[#]], 0] == 3 &];
f = Select[Union[Flatten[#]] & /@ Subsets[e, {4}], Length@# == 4 &];
f = f /. {a_, b_, c_, d_} :> {b, a, c, d};
rotv[t_] = (RotationMatrix[
t, {{0, 0, 1, 0}, {0, 1, 0, 0}}].RotationMatrix[
2 t, {{1, 0, 0, 0}, {0, 0, 0, 1}}].#) & /@ v;
proj[t_] := Most[#]/(3 - Last[#]) & /@ rotv[t];
Export["C:\\Users\\Administrator\\Desktop\\超立方体0.gif",
Table[Graphics3D[
GraphicsComplex[
proj[t], {Blue, Specularity[0.75, 10], Sphere[Range, 0.05],
Tube[e, 0.03], Opacity[0.3], Polygon@f}], Boxed -> False,
Background -> White, ImageSize -> {500, 500}, PlotRange -> 1], {t,
0.0, Pi/2.0, 0.075}]]
再来一个互动效果:
IncDim[sg_, d_] := Map[Append[#, d] &, sg, {2}];
DblSegments[l_] := Join[IncDim[l, -1], IncDim[l, 1]];
ConnectPoints[l1_, l2_] :=
Table[{Flatten[l1, 1][[i]], Flatten[l2, 1][[i]]}, {i,
Length[Flatten[l1, 1]]}];
DblConnSegments[l_] :=
Union[ConnectPoints[IncDim[l, -1], IncDim[l, 1]]];
UpDimShape[l_] := Join[DblSegments[l], DblConnSegments[l]];
Sqr = UpDimShape[{{{-1}, {1}}}];
Cube = UpDimShape[Sqr];
Homogen[l_] := Map[Append[#, 1] &, l, {2}];
Tes = UpDimShape[Cube];
R4x[\[Theta]_] := {{1, 0, 0, 0, 0}, {0, Cos[\[Theta]], -Sin[\[Theta]],
0, 0}, {0, Sin[\[Theta]], Cos[\[Theta]], 0, 0}, {0, 0, 0, 1,
0}, {0, 0, 0, 0, 1}}
R4y[\[Theta]_] := {{Cos[\[Theta]], 0, Sin[\[Theta]], 0, 0}, {0, 1, 0,
0, 0}, {-Sin[\[Theta]], 0, Cos[\[Theta]], 0, 0}, {0, 0, 0, 1,
0}, {0, 0, 0, 0, 1}}
R4z[\[Theta]_] := {{Cos[\[Theta]], -Sin[\[Theta]], 0, 0,
0}, {Sin[\[Theta]], Cos[\[Theta]], 0, 0, 0}, {0, 0, 1, 0, 0}, {0,
0, 0, 1, 0}, {0, 0, 0, 0, 1}}
R4k[\[Theta]_] := {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0,
Cos[\[Theta]], -Sin[\[Theta]], 0}, {0, 0, Sin[\[Theta]],
Cos[\[Theta]], 0}, {0, 0, 0, 0, 1}}
Rotate4X[l_, \[Theta]_] := Map[R4x[\[Theta]].# &, l, {2}]
Rotate4Y[l_, \[Theta]_] := Map[R4y[\[Theta]].# &, l, {2}]
Rotate4Z[l_, \[Theta]_] := Map[R4z[\[Theta]].# &, l, {2}]
Rotate4K[l_, \[Theta]_] := Map[R4k[\[Theta]].# &, l, {2}]
DropUnit[l_] := Map[Drop[#, -1] &, l, {2}]
RotFigure4[l_, \[Theta]x_, \[Theta]y_, \[Theta]z_, \[Theta]k_] :=
DropUnit[Rotate4K[
Rotate4Z[
Rotate4Y[
Rotate4X[
Homogen[l], \[Theta]x], \[Theta]y], \[Theta]z], \[Theta]k]]
PersPoint[pt_, d_] := Map[#/(Last[pt]/d) &, pt]
Perspective[l_, d_] := Ortho[Map[PersPoint[#, d] &, l, {2}]]
Mtr4[x_, y_, z_,
k_] := {{1, 0, 0, 0, x}, {0, 1, 0, 0, y}, {0, 0, 1, 0, z}, {0, 0, 0,
1, k}, {0, 0, 0, 0, 1}}
Trans5vec[l_, x_, y_, z_, k_] := Map[Mtr4[x, y, z, k].# &, l, {2}]
Trans5[l_, x_, y_, z_, k_] :=
DropUnit[Trans5vec[Homogen[l], x, y, z, k]]
Manipulate[
Graphics3D[{Darker@Red, CapForm["Round"], Specularity[White, 20],
Tube[Perspective[
Trans5[RotFigure4[Tes, 0, 0, 0, a], 0, 0, 0, -3], -1], 0.04]},
PlotRange -> {{-.7, .7}, {-.7, .7}, {-.7, .7}}, Boxed -> False,
Lighting -> "Neutral", ImageSize -> 1.1 {400, 400},
SphericalRegion -> True],
{{a, 0, "动起来"}, 0, 2*3.1416, .0001, Appearance -> "Labeled"},
SaveDefinitions -> True
呵呵,这个动态图的自定义很多,而且我也不会导出动态图!自己慢慢理解吧!
这里画一个克莱因瓶,这是个四维空间的物体,来源于莫比乌斯带的类比。
Manipulate[
With[{bsc =
Take[{{0, 0, 0}, {0, 0, 14}, {0, 0, 20}, {0, 0, 25}, {1.7, 0,
30}, {7, 0, 32}, {10, 0, 31.5}, {13, 0, 30}, {15, 0, 26}, {13,
0, 20}, {10, 0, 17.5}, {4, 0, 13.5}, {2.5, 0, 11}, {0.33, 0,
7}, {0.2, 0, 2.5}, {0, 0, 0}}, t + 2],
sizes = Take[{6.5, 14, 4, 2.3, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2,
2.6, 3.3, 3.6, 4.3, 6.5}, t + 2]},
Graphics3D[{color, CapForm[None], Opacity[opacity],
Tube[BSplineCurve[bsc], sizes]}, Boxed -> False,
PlotRange -> {{-15, 17}, {-15, 15}, {0, 35}},
ViewPoint -> {0, -5, 0}, SphericalRegion -> True,
ImageSize -> {500, 500}]], {{t, 1, "times"}, 1, 14,
1}, {{opacity, 0.7}, 0.1, 1}, {{color, Blue}, ColorSlider}
把克莱因瓶涂成彩色格子。
KleinBottle[a_, b_, xmesh_, ymesh_] :=
Module[{bx, by, rad, X, Y, Z, u, v},
bx = 6 Cos[u] (1 + Sin[u]);
by = 16 Sin[u];
rad = 4 (1 - Cos[u]/2);
X = If[Pi < u <= 2 Pi, bx + rad Cos[v + Pi],
bx + rad Cos[u] Cos[v]];
Y = If[Pi < u <= 2 Pi, by, by + rad Sin[u] Cos[v]];
Z = rad Sin[v];
ParametricPlot3D[{X, Y, Z}, {u, 0, a}, {v, 0, b},
PlotRange -> {{-13, 10}, {-16, 20}, {-6, 6}},
MeshShading -> {{Red, Blue}, {Green, Yellow}},
MeshStyle -> None,
Axes -> None,
Boxed -> False,
ViewVertical -> {0.44, -0.83, -1.40},
ViewPoint -> {1.62, -0.18, -2.96},
ImageSize -> {425, 425},
Mesh -> {xmesh, ymesh}]
];
Manipulate[
KleinBottle[u, v, a, b], {{u, 2. Pi, "draw"}, 1, 2. Pi,
ImageSize -> Tiny}, {{v, Pi, "cutaway"}, Pi, 2. Pi,
ImageSize -> Tiny}, {{a, 1, "mesh A"}, 1, 8, 1,
ImageSize -> Tiny}, {{b, 1, "mesh B"}, 1, 4, 1, ImageSize -> Tiny},
ControlPlacement -> Left, SaveDefinitions -> True